

Emerging Trabecular Outflow Drugs

Casey C. Kopczynski¹ and David L. Epstein^{2,*}

GLAUCOMA IS A progressive optic neuropathy that is a leading cause of irreversible blindness worldwide.¹ Elevated intraocular pressure (IOP) is commonly associated with glaucoma, and multiple longitudinal studies have demonstrated that lowering IOP in patients can slow optic nerve degeneration and preserve vision.² Although medications are available to reduce elevated IOP, the most commonly prescribed drugs do not address the underlying cause of elevated IOP in glaucoma, the deteriorating function of the trabecular outflow pathway.

The trabecular outflow pathway is the primary draining tissue for the aqueous humor in the eye. It consists of 3 structures, the trabecular meshwork (TM), juxtaganular tissue, and Schlemm's canal. In a healthy eye, IOP is maintained within a narrow range through dynamic regulation of trabecular outflow resistance. In a glaucomatous eye, elevated IOP is due to an abnormally high resistance to outflow in the trabecular outflow pathway.³ The causes of increased outflow resistance are not fully understood, but it has been hypothesized to involve an increase in the contractile tone and stiffness of the TM and changes in extracellular matrix composition and/or a change in the conductance of Schlemm's canal.⁴

There is a significant need for glaucoma drugs that specifically target the physiologic cause of elevated IOP and thereby enhance trabecular outflow. The tissues of the trabecular outflow pathway are avascular and rely on the aqueous humor to supply nutrients, growth factors, and antioxidants. The most widely prescribed glaucoma drugs, the prostaglandin analogues (PGAs), lower IOP by increasing the aqueous drainage through the unconventional uveoscleral outflow pathway.⁵ The older, non-PGA drug classes, the beta blockers, alpha agonists, and carbonic anhydrase inhibitors, lower IOP by decreasing the production of aqueous humor.⁵ By shunting the aqueous humor through the uveoscleral pathway or decreasing the aqueous production, the commonly used glaucoma medications actually decrease the outflow of aqueous humor through the diseased TM. Thus, while protecting the optic nerve from damage by lowering IOP, current medications may be allowing further degradation of the trabecular outflow pathway.

PGAs have become the initial therapy of choice for most physicians because they are generally more effective at lowering IOP and better tolerated than non-PGA drugs, and they offer a once-daily dosing regimen. Although PGAs often provide adequate efficacy as an initial therapy, nearly

half of all patients started on PGA monotherapy ultimately require 1 or more non-PGA drugs to be added to their treatment regimen. This is the primary reason why half of all prescriptions are still written for non-PGA products.⁶ It does not appear that PGAs become less effective at promoting the uveoscleral outflow over time. IOPs continue to rise over time because the function of the trabecular outflow pathway continues to deteriorate over time.

Fortunately, several new drug classes that target the trabecular outflow pathway have entered clinical development (Table 1). The drug class with the longest history in the clinic is the class of selective Rho kinase inhibitors. Rho kinase is a serine/threonine kinase whose activity increases actomyosin contraction in smooth muscle cells, including the smooth muscle-like cells of the TM. The therapeutic potential of Rho kinase inhibitors was initially demonstrated in preclinical studies using the Rho kinase inhibitor Y-27632, which was shown to relax precontracted TM tissue *ex vivo*,⁷ increase trabecular outflow in perfused enucleated porcine eyes,⁸ and lower IOP in live rabbits upon topical ocular application.⁹

According to clinical trial registries in the U.S., Europe, and Japan, 7 different selective Rho kinase inhibitors have been tested in human clinical trials.¹⁰ The most studied compound of this class is Aerie Pharmaceuticals' AR-12286. Although Aerie has replaced AR-12286 with the Rho kinase/norepinephrine transporter (ROCK/NET) inhibitor AR-13324 as its lead trabecular outflow drug (see below), much was learned about the potential clinical utility of selective Rho kinase inhibitors from AR-12286 clinical studies. For example, transient hyperemia is a class effect of Rho kinase inhibitors that results from relaxation of the smooth muscle cells of conjunctival blood vessels. A 28-day study of AR-12286 in patients with elevated IOP showed that transient hyperemia associated with Rho kinase inhibition could be effectively managed by dosing the drug once-daily in the evening to allow the hyperemia to resolve overnight.¹¹ Specifically, once-daily P.M. dosing of 0.5% AR-12286 achieved IOP reductions of 2.9 to 6.1 mmHg, similar to twice-daily dosing of 0.25% AR-12286. However, the hyperemia incidence with the once-daily P.M. dosing regimen was only 11% compared with 46% for the twice-daily dosing regimen.

Another AR-12286 clinical study demonstrated that Rho kinase inhibition can be used successfully in combination with PGAs to achieve a greater IOP lowering than PGA therapy alone.¹² In patients with elevated IOP, a fixed-dose

¹Aerie Pharmaceuticals, Research Triangle Park, North Carolina.

²Department of Ophthalmology, Duke University, Durham, North Carolina.

*Deceased, March 2014.

TABLE 1. RECENT CLINICAL DEVELOPMENT OF TRABECULAR OUTFLOW DRUGS

Drug class/molecule	Company	Phase 2 data references
ROCK inhibitors		
AR-12286	Aerie	11, 12, 19
ATS-907	Altheos	n.a.
AMA-0076	Amakem	n.a.
INS-117548	Inspire/Merck	n.a.
K-115	Kowa	13
DE-104	Santen	n.a.
SNJ-1656	Senju/Novartis	20
Adenosine A1 agonists		
INO-8875	Inotek	15
ROCK/NET inhibitors		
AR-13324	Aerie	18

ROCK, Rho kinase; NET, norepinephrine transporter; n.a., not available.

combination of 0.5% AR-12286 and 0.004% travoprost achieved IOP reductions of 9 to 12 mmHg when dosed once-daily in the evening and produced a reduction in diurnal IOP that was 2 mmHg greater than travoprost alone. The incidence and severity of hyperemia for the fixed-dose combination was similar to travoprost monotherapy. Given that physicians often need to prescribe non-PGA drugs as add-on therapy to PGAs, it is important that the Rho kinase mechanism of action is compatible with the PGA mechanism of action.

Phase 2 clinical study results have recently been published for another selective Rho kinase inhibitor, K-115, from Kowa.¹³ In patients with elevated IOP, twice-daily dosing of 0.4% K-115 achieved IOP reductions of 3.1 to 4.5 mmHg. A 65% incidence of transient, mild hyperemia was reported for this concentration. The 0.4% concentration of K-115 has been advanced to Phase 3 studies in Japan.

Adenosine A₁ receptor agonists represent another new drug class that targets the trabecular outflow pathway. Adenosine A₁ agonists are thought to increase the trabecular outflow by reducing the cell volume and increasing the expression of matrix metalloproteinases.¹⁴ The clinical study results from a 28-day Phase 2 trial have recently been presented for the adenosine A₁ agonist trabodenoson (INO-8875).¹⁵ In patients with elevated IOP, twice-daily dosing of 500 µg trabodenoson produced IOP reductions of 4.9 to 6.5 mmHg. A transient, mild hyperemia was observed, although the incidence of hyperemia was not reported.

The newest class of trabecular outflow drugs is the dual-action ROCK/NET class. ROCK/NET inhibitors are single molecules that act through a dual mechanism of action, simultaneously inhibiting Rho Kinase to increase trabecular outflow and inhibiting the NET to reduce the production of aqueous humor.^{16,17} Aerie Pharmaceuticals' AR-13324 is the first compound of this class to be tested in the clinic and has replaced AR-12286 as Aerie's lead trabecular outflow drug. In a 7-day clinical trial in patients with elevated IOP, once-daily A.M. dosing of AR-13324 (0.01%, 0.02%, or 0.04%) produced IOP reductions ranging from 5.6 to 7.2 mmHg.¹⁸ The morning dosing regimen produced transient, mild to moderate hyperemia with an incidence of 29% for the 0.02% concentration (the top of the dose-response curve) on day 7. The 0.01% and 0.02% concentrations of AR-13324 have been advanced to a 28-day Phase 2b study to evaluate the efficacy

and tolerability of AR-13324 when dosed once-daily in the evening. In addition, clinical development has begun for PG324, a fixed-dose combination product that combines AR-13324 with latanoprost.

Physicians have long desired a drug that could effectively treat the source of elevated IOP in glaucoma, the diseased trabecular outflow pathway. Once available, it will be possible to address potential benefits that may be unique to a trabecular outflow drug. Does improving the flow of nutrients and growth factors to the trabecular outflow pathway stop or even reverse its degeneration? Is it important that trabecular outflow drugs be used early in the course of treatment, before the outflow pathway is damaged beyond repair? Does improving trabecular outflow restore the normal ability of the TM to dampen spikes in IOP and thereby provide greater protection to the optic nerve? Fortunately, significant progress is being made toward bringing an effective and well-tolerated trabecular outflow drug to the practice of glaucoma medicine.

Author Disclosure Statement

Casey C. Kopczynski is the Chief Scientific Officer and Cofounder at Aerie Pharmaceuticals. Aerie is developing the trabecular outflow drug AR-13324 mentioned in the editorial. As an employee of Aerie, he is an owner of Aerie stock as well as an owner of options to purchase stock. David L. Epstein is the founder of Aerie Pharmaceuticals and a former member of the Board of Directors. He is the owner of Aerie stock as well as an owner of options to purchase stock.

References

- Quigley, H.A., and Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. *Br. J. Ophthalmol.* 90:262–267, 2006.
- Sommer, A. Intraocular pressure and glaucoma. *Am. J. Ophthalmol.* 107:186–188, 1989.
- Grant, W.M. Clinical tonography. *Trans. Am. Acad. Ophthalmol. Otolaryngol.* 55:774–781, 1951.
- Stamer, W.D., and Acott, T.S. Current understanding of conventional outflow dysfunction in glaucoma. *Curr. Opin. Ophthalmol.* 23:135–143, 2012.
- Hoyng, P.F., and van Beek, L.M. Pharmacological therapy for glaucoma: a review. *Drugs* 59:411–434, 2000.
- IMS Prescription Database, 2012. www.imshealth.com, accessed on May 10, 2013.
- Thieme, H., Nuskovski, M., Nass, J.U., Pleyer, U., Strauss, O., and Wiederholt, M. Mediation of calcium-independent contraction in trabecular meshwork through protein kinase C and rho-A. *Invest. Ophthalmol. Vis. Sci.* 41:4240–4246, 2000.
- Rao, P.V., Deng, P.F., Kumar, J., and Epstein, D.L. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. *Invest. Ophthalmol. Vis. Sci.* 42:1029–1037, 2001.
- Honjo, M., Tanihara, H., Inatani, M., Kido, N., Sawamura, T., Yue, B.Y., Narumiya, S., and Honda, Y. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. *Invest. Ophthalmol. Vis. Sci.* 42:137–144, 2001.
- Novack, G.D. Rho kinase inhibitors for the treatment of glaucoma. *Drugs Future* 38:107–113, 2013.
- Serle, J.B., Novack, G.D., Van Haarlem, T.J., and Kopczynski, C. AR-12286 Phase 2b Study Group. A 28-day active-controlled, Phase 2b study assessing the safety and ocular

hypotensive efficacy of AR-12286 in patients with elevated intraocular pressure. ARVO Meeting Abstracts. *Invest. Ophthalmol. Vis. Sci.* 52:E-Abstract 217, 2011.

12. Levy, B., Lewis, R., Kopczynski, C., Van Haarlem, T., and Novack, G. PG286-CS201 Study Group. Ocular hypotensive efficacy and safety of a fixed dose combination of AR-12286 (a Rho kinase inhibitor) and travoprost. ARVO Meeting Abstracts. *Invest. Ophthalmol. Vis. Sci.* 54:E-Abstract 752, 2013.

13. Tanihara, H., Inoue, T., Yamamoto, T., Kuwayama, Y., Abe, H., and Araie, M. K-115 Clinical Study Group. Phase 2 randomized clinical study of a Rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. *Am. J. Ophthalmol.* In press, 2013.

14. Zhong, Y., Yang, Z., Huang, W.C., and Luo, X. Adenosine, adenosine receptors and glaucoma: an updated overview. *Biochim. Biophys. Acta* 1830:2882–2890, 2013.

15. Myers, J., Sall, K., DuBiner, H., Brickman, C., Slomowitz, N., McVicar, W., and Baumgartner, R. A randomized, Phase II study of trabodenoson (INO-8875) in adults with ocular hypertension (OHT) or primary open-angle glaucoma (POAG). ARVO Meeting Abstracts. *Invest. Ophthalmol. Vis. Sci.* 54:E-Abstract 2621, 2013.

16. deLong, M.A., Yingling, J., Lin, C-W., Sherman, B., Sturdivant, J., Heintzelman, G., Lathem, C., van Haarlem, T., and Kopczynski, C. Discovery and SAR of a class of ocularly-active compounds displaying a dual mechanism of activity for the treatment of glaucoma. ARVO Meeting Abstracts. *Invest. Ophthalmol. Vis. Sci.* 53:E-Abstract 3867, 2012.

17. Wang, R.-F., Serle, J.B., and Kopczynski, C. Effect of 0.04% AR-13324 on aqueous humor dynamics in normotensive monkey eyes. ARVO Meeting Abstracts. *Invest. Ophthalmol. Vis. Sci.* 53:E-Abstract 1994, 2012.

18. Weiss, M., Levy, B., Kopczynski, C., van Haarlem, T., and Novack, G. AR-13324-CS201 Study Group. Evaluation of AR-13324, a novel dual mechanism agent, in lowering of IOP in glaucoma and ocular hypertension. ARVO Meeting Abstracts. *Invest. Ophthalmol. Vis. Sci.* 54:E-Abstract 754, 2013.

19. Williams, R.D., Novack, G.D., van Haarlem, T., and Kopczynski, C. AR-12286 Phase 2A Study Group. Ocular hypotensive effect of the Rho kinase inhibitor AR-12286 in patients with glaucoma and ocular hypertension. *Am. J. Ophthalmol.* 152:834–841, 2011.

20. Novartis Clinical Trial Results Database. www.novctrd.com/ctrdWebApp/clinicaltrialrepository/public/login.jsp, accessed on March 18, 2012.

Received: October 7, 2013

Accepted: October 15, 2013

Address correspondence to:

Dr. Casey C. Kopczynski

Aerie Pharmaceuticals

7020 Kit Creed Rd, Suite 270

Research Triangle Park, NC 27709

E-mail: ckopczynski@aeriepharma.com

This article has been cited by:

1. Chai Y Loke, Ean H Ooi, Mohamed S Salahudeen, Norlina Ramli, Amir Samsudin. 2018. Segmental aqueous humour outflow and eye orientation have strong influence on ocular drug delivery. *Applied Mathematical Modelling* **57**, 474-491. [\[Crossref\]](#)
2. Sharif Najam A.. 2018. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. *Journal of Ocular Pharmacology and Therapeutics* **34**:1-2, 7-39. [\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#) [\[PDF Plus\]](#)
3. Lin Cheng-Wen, Sherman Bryan, Moore Lori A., Laethem Carmen L., Lu Da-Wen, Pattabiraman Padmanabhan P., Rao Ponugoti Vasantha, deLong Mitchell A., Kopczynski Casey C.. 2018. Discovery and Preclinical Development of Netarsudil, a Novel Ocular Hypotensive Agent for the Treatment of Glaucoma. *Journal of Ocular Pharmacology and Therapeutics* **34**:1-2, 40-51. [\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#) [\[PDF Plus\]](#)
4. Patil Rajkumar, Wang Haishan, Sharif Najam A., Mitra Alok. 2018. Aquaporins: Novel Targets for Age-Related Ocular Disorders. *Journal of Ocular Pharmacology and Therapeutics* **34**:1-2, 177-187. [\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#) [\[PDF Plus\]](#)
5. Kazemi Arash, McLaren Jay W., Kopczynski Casey C., Heah Theresa G., Novack Gary D., Sit Arthur J.. The Effects of Netarsudil Ophthalmic Solution on Aqueous Humor Dynamics in a Randomized Study in Humans. *Journal of Ocular Pharmacology and Therapeutics*, ahead of print. [\[Abstract\]](#) [\[Full Text\]](#) [\[PDF\]](#) [\[PDF Plus\]](#)
6. Janet B. Serle, L. Jay Katz, Eugene McLaurin, Theresa Heah, Nancy Ramirez-Davis, Dale W. Usner, Gary D. Novack, Casey C. Kopczynski. 2018. Two Phase 3 Clinical Trials Comparing the Safety and Efficacy of Netarsudil to Timolol in Patients With Elevated Intraocular Pressure: Rho Kinase Elevated IOP Treatment Trial 1 and 2 (ROCKET-1 and ROCKET-2). *American Journal of Ophthalmology* **186**, 116-127. [\[Crossref\]](#)
7. Trevor Stack, Amir Vahabikashi, Mark Johnson, Evan Scott. 2018. Modulation of Schlemm's canal endothelial cell stiffness via latrunculin loaded block copolymer micelles. *Journal of Biomedical Materials Research Part A* . [\[Crossref\]](#)
8. W. Daniel Stamer, Abbot F. Clark. 2017. The many faces of the trabecular meshwork cell. *Experimental Eye Research* **158**, 112-123. [\[Crossref\]](#)
9. M. Elizabeth Fini, Stephen G. Schwartz, Xiaoyi Gao, Shinwu Jeong, Nitin Patel, Tatsuo Itakura, Marianne O. Price, Francis W. Price, Rohit Varma, W. Daniel Stamer. 2017. Steroid-induced ocular hypertension/glaucoma: Focus on pharmacogenomics and implications for precision medicine. *Progress in Retinal and Eye Research* **56**, 58-83. [\[Crossref\]](#)
10. Jae Woo Kim. 2017. Comparative Study of the Effects of Trabecular Meshwork Outflow Drugs on the Permeability and Nitric Oxide Production in Trabecular Meshwork Cells. *Korean Journal of Ophthalmology* **31**:5, 452. [\[Crossref\]](#)
11. Jed Asher Lusthaus, Ivan Goldberg. 2016. Investigational and experimental drugs for intraocular pressure reduction in ocular hypertension and glaucoma. *Expert Opinion on Investigational Drugs* **25**:10, 1201-1208. [\[Crossref\]](#)
12. Padmanabhan P. Pattabiraman, Carol B. Toris. 2016. The exit strategy: Pharmacological modulation of extracellular matrix production and deposition for better aqueous humor drainage. *European Journal of Pharmacology* **787**, 32-42. [\[Crossref\]](#)
13. Karen Y. Torrejon, Ellen L. Papke, Justin R. Halman, Judith Stolwijk, Cula N. Dautriche, Magnus Bergkvist, John Danias, Susan T. Sharfstein, Yubing Xie. 2016. Bioengineered glaucomatous 3D human trabecular meshwork as an in vitro disease model. *Biotechnology and Bioengineering* **113**:6, 1357-1368. [\[Crossref\]](#)
14. Jill M. Sturdivant, Susan M. Royalty, Cheng-Wen Lin, Lori A. Moore, Jeffrey D. Yingling, Carmen L. Laethem, Bryan Sherman, Geoffrey R. Heintzelman, Casey C. Kopczynski, Mitchell A. deLong. 2016. Discovery of the ROCK inhibitor netarsudil for the treatment of open-angle glaucoma. *Bioorganic & Medicinal Chemistry Letters* **26**:10, 2475-2480. [\[Crossref\]](#)
15. Richard A Lewis, Brian Levy, Nancy Ramirez, Casey C Kopczynski, Dale W Usner, Gary D Novack. 2016. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. *British Journal of Ophthalmology* **100**:3, 339-344. [\[Crossref\]](#)
16. Jed Asher Lusthaus, Ivan Goldberg. 2016. Emerging drugs to treat glaucoma: targeting prostaglandin F and E receptors. *Expert Opinion on Emerging Drugs* **21**:1, 117-128. [\[Crossref\]](#)
17. Jae Woo Kim, Keun Hae Kim, Seok Jin Hwang. 2016. Effect of Rho Kinase Inhibitor on the Production of Nitric Oxide in Trabecular Meshwork Cells. *Journal of the Korean Ophthalmological Society* **57**:4, 650. [\[Crossref\]](#)
18. Sandro Boland, Arnaud Bourin, Jo Alen, Jacques Geraets, Pieter Schroeders, Karolien Castermans, Nele Kindt, Nicki Boumans, Laura Panitti, Jessica Vanormelingen, Silke Fransen, Sarah Van de Velde, Olivier Defert. 2015. Design, synthesis and biological characterization of selective LIMK inhibitors. *Bioorganic & Medicinal Chemistry Letters* **25**:18, 4005-4010. [\[Crossref\]](#)

19. Hidenobu Tanihara, Toshihiro Inoue, Tetsuya Yamamoto, Yasuaki Kuwayama, Haruki Abe, Hideki Suganami, Makoto Araie. 2015. Intra-ocular pressure-lowering effects of a Rho kinase inhibitor, ripasudil (K-115), over 24 hours in primary open-angle glaucoma and ocular hypertension: a randomized, open-label, crossover study. *Acta Ophthalmologica* **93**:4, e254-e260. [[Crossref](#)]
20. Sharif Najam A.. 2015. Novel Potential Treatment Modalities for Ocular Hypertension: Focus on Angiotensin and Bradykinin System Axes. *Journal of Ocular Pharmacology and Therapeutics* **31**:3, 131-145. [[Abstract](#)] [[Full Text](#)] [[PDF](#)] [[PDF Plus](#)]
21. W. Daniel Stamer, Sietse T. Braakman, Enhua H. Zhou, C. Ross Ethier, Jeffrey J. Fredberg, Darryl R. Overby, Mark Johnson. 2015. Biomechanics of Schlemm's canal endothelium and intraocular pressure reduction. *Progress in Retinal and Eye Research* **44**, 86-98. [[Crossref](#)]
22. Carol A. Rasmussen, Paul L. Kaufman. 2014. Exciting directions in glaucoma. *Canadian Journal of Ophthalmology / Journal Canadien d'Ophthalmologie* **49**:6, 534-543. [[Crossref](#)]
23. Carol A. Rasmussen, Paul L. Kaufman, Robert Ritch, Reza Haque, R. Kim Brazzell, Jason L. Vittitow. 2014. Latrunculin B Reduces Intraocular Pressure in Human Ocular Hypertension and Primary Open-Angle Glaucoma. *Translational Vision Science & Technology* **3**:5, 1. [[Crossref](#)]
24. Novack Gary D.. 2014. Eyes on New Product Development: Trabecular Meshwork. *Journal of Ocular Pharmacology and Therapeutics* **30**:2-3, 83-84. [[Citation](#)] [[Full Text](#)] [[PDF](#)] [[PDF Plus](#)]